

Progetto SMART CASE: realizzazione di un dimostratore nZEB

Il progetto SMART CASE prevede la realizzazione di un edificio nZEB, ovvero un edificio in cui la domanda di energia è completamente o quasi soddisfatta da fonti di energia rinnovabile.

La **GRADED S.p.A**. ha risposto a tali esigenze realizzando tutti i progetti (architettonico, strutturale ed impiantistico) e installando gli impianti meccanici ed elettrici, vero cuore del progetto, utilizzando **le più efficienti tecnologie**.

Progetto SMART CASE: le tecnologie realizzate

IMPIANTI MECCANICI

IMPIANTI ELETTRICI

AGGREGATO COMPATTO

MULTISPLIT

DISTRIBUZIONE AERAULICA

SISTEMA DI FILTRAZIONE

SOLARE TERMICO

GEOTERMICO

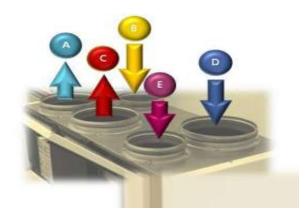
IDRICO-SANITARIO

FOTOVOLTAICO

ILLUMINAZIONE LED

DISTRIBUZIONE ELETTRICO

INTERFACCIAMENTO MONITORAGGIO



AGGREGATO COMPATTO

Unità aeraulica in pompa di calore che copre le esigenze di riscaldamento, raffreddamento, produzione di acqua calda ventilazione meccanica sanitaria, con recupero termodinamico e filtrazione elettronica.

-	
	Riscaldamento
ė.	Produzione Acqua Calda Sanitaria
	Raffrescamento
	Deumidificazione
	Ventilazione Meccanica Controllata
1	Purificazione dell'aria

- B. Estrazione aria viziata (bagni e cucina)
- C. Mandata in ambiente
- D. Presa aria esterna
- Presa ricircolo aria interna

ELFOPack - CLIVET

Potenze - Efficienze		
Potenzialità termica (kW)	3,18	
SCOP termodinamico	3,83	
Potenzialità frigorifera (kW)	2,14	
SEER termodinamico	2,53	

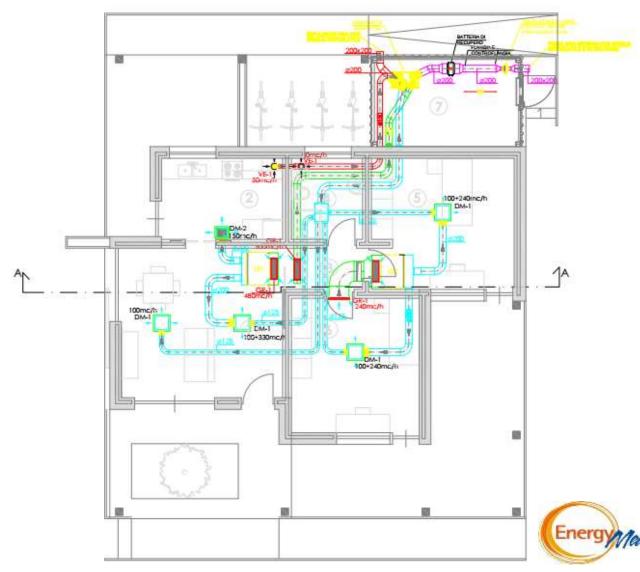
(2)

SISTEMA MULTISPLIT

Sistema di backup ad alta efficienza

2 unità interne DAIKIN FDXM35F 1 unità esterna DAIKIN 4MXM80

Potenze - Efficienze		
Potenzialità termica unità (kW)	4,25	
SCOP termodinamico	4,04	
Potenzialità frigorifera unità (kW)	3,5	
SEER termodinamico	7,43	



3

SISTEMA DISTRIBUZIONE AERAULICO

I canali sono stati dimensionati in modo che la velocità dell'aria **non superi nei punti critici in nessun modo i 4,5 m/s** come previsto dalla letteratura tecnica di settore.

 $\left(\mathsf{4}\right)$

SISTEMA DI FILTRAZIONE

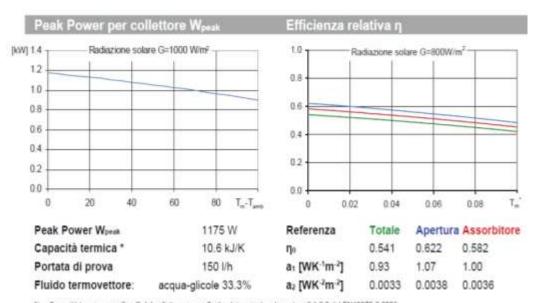
Grazie ad un'avanzata tecnologia costituita da un'unità di ionizzazione ed un filtro a carboni attivo, si ottiene una elevata efficienza di filtrazione pari al 99%.

ASPRA S INduct – AirQM VFA Active Carbon Filter

L'unità di ionizzazione elimina i virus e carica le particelle nell'aria permettendo loro di essere catturati nell'unità di raccolta. Il filtro a carboni attivo inoltre permette di rimuovere gas e odori dall'aria del condotto di aspirazione.

Esso permette una ridotta perdita di carico rispetto ad un tradizionale filtro (20%)

che consente di operare a bassa velocità minimizzando l'energia elettrica richiesta.



5

IMPIANTO SOLARE TERMICO

Collettore solare con **tubi sottovuoto** a circolazione forzata con **accumulo di 200 I** per la produzione di ACS e per il preriscaldamento dell'aria in ingresso nell'aggregato compatto.

TUBI SOTTOVUOTO HV 12 BOLLITORE HB 200 CIRCOLATORE WILO ST 25/7 CENTRALINA DIGI-X3 HE VASO ESPANSIONE 12 L

Capacità termica specifica C del collettore senza fluido, determinato adeguato a 6.1.6.2 del EN12975-2.2006

6

IMPIANTO GEOTERMICO

100 m di serpentine geotermiche orizzontali installate a **2 m di profondità** dalla superficie nelle quali circola acqua glicolata per il pretrattamento dell'aria di condizionamento degli ambienti prima della sua immissione nell'unità monoblocco.

TUBI MULTISTRATO REHAU SDC ARIA - ACQUA CIRCOLATORE SALMSON 60-25/130

- Scambiatore di calore aria acqua:
 - o Portata aria: 100 m3/h
 - Temperatura ingresso aria: temperatura esterna (Benevento, da normativa 33°C in estate, -2°C in inverno);
 - Portata acqua: 0,2 l/s;
 - Temperatura ingresso acqua: 16°C;
 - Potenza scambio termico: 0,6 kW.

IDRICO-SANITARIO

TUBAZIONI REHAU ELETTROPOMPA SOMMERGIBILE

Collegamento con rete idrica nazionale

Installazione tubazioni carico e collettore

Installazione tutti pezzi igienici

Installazione tubazioni scarico

Installazione pozzetto raccolta acque reflue

Installazione elettropompa sommergibile per acque reflue

Collegamento con rete fognaria

Predisposizione in pozzetto esterno per eventuale fitodepurazione

SCHEMA A BLOCCHI IDRAULICO

FUNZIONAMENTO STANDARD

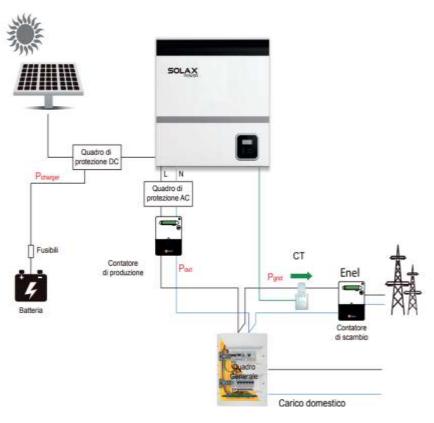
Il geotermico pretratta l'aria in ingresso nell'aggregato compatto e il solare termico fornisce energia termica per ACS.

SCHEMA A BLOCCHI IDRAULICO

FUNZIONAMENTO SOLARE - ARIA

Nelle stagioni invernali, quando non occorre energia termica per l'ACS, tramite un complesso sistema di valvole si devia l'energia termica del **solare verso la batteria aria – acqua** di pretrattamento dell'aria.

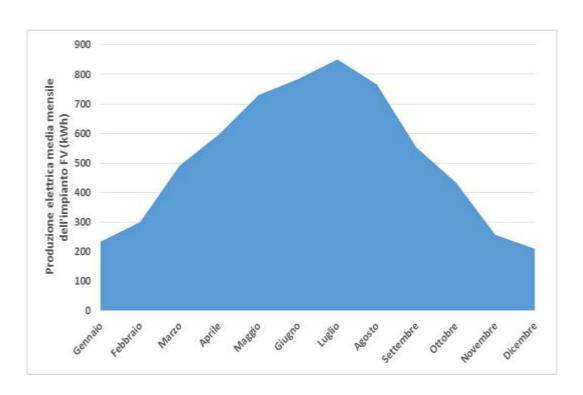
SCHEMA IDRAULICO


IMPIANTO FOTOVOLTAICO

Impianto fotovoltaico di **5,3 kW** con **accumulo**

di 6,5 kWh.

16 PANNELLI 330 W INVERTER 5 kW BATTERIA LG 6,5 kWh





IMPIANTO FOTOVOLTAICO

Inclinazione pannelli (Tilt)	5°
Orientamento pannelli (Azimuth)	0°
Produzione elettrica annua (kWh)	6.208
Consumo stimato NZEB (kWh)	3.500

2 ILLUMINAZIONE LED

LAMPADE HUE PHILIPS

Controllo in remoto di tutte le luci tramite il **BRIDGE HUE** della **PHILIPS**

3

DISTRIBUZIONE ELETTRICO

Il quadro elettrico generale è ubicato nel **locale tecnico** adiacente l'abitazione.

Due linee luci interne

Alimentazione sezionata per ogni macchina

Una linea prese esterna

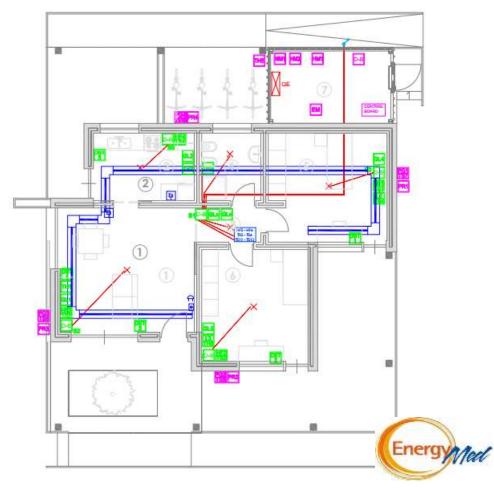
Una linea luci esterna

Due linee prese interne

Quadro di parallelo per collegamento FV e rete

LINEE LUCI LINEE PRESE ALIMENTAZIONE MACCHINE

INTERFACCIAMENTO MONITORAGGIO


Alimentazione cassetta distribuzioni singolo ambiente e sezionamento circuito ove necessario.

Installazione **scheda ZELIO LOGIC** per protocollo modbus per valvole, filtro e ventilatore gestibili in remoto col **BMS**.

SEZIONAMENTO CIRCUITO ALIMENTAZIONE SENSORI SCHEDA MODBUS ZELIO LOGIC

Progetti di R&D: investimenti per un confronto costante nell'analisi e sviluppo di aree di business innovative con prestigiosi Enti dedicati

Soluzioni innovative
multifunzionali per
l'ottimizzazione dei consumi di
energia primaria e della
vivibilità indoor nel sistema
edilizio

GEOGRID

Piattaforme tecnologiche modulari basate su celle a combustibile per la cogenerazionepoligenerazione dell'energia

SMART

Piattaforme tecnologiche per lo sviluppo di sistemi ibridi di generazione e cogenerazione basati sullo sfruttamento di biomasse

SMART CASE

Inaugurato il 16.01.2018

Soluzioni innovative per l'uso
sostenibile della risorsa geotermica
e integrazione con sistemi di
condizionamento degli ambienti e
per la realizzazione di un
trigeneratore alimentato da fonte

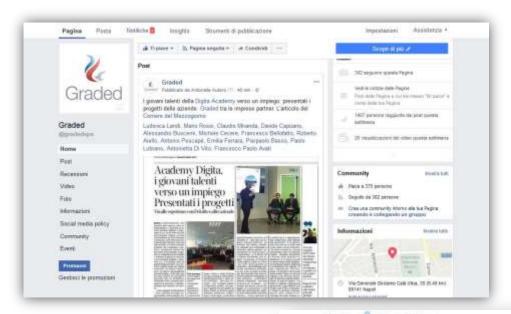
geotermica e solare

FUEL CELL

GENERATION

Recupero energetico di re

Recupero energetico di reflui industriali attraverso la gassificazione per la generazione di energia


"Oltre 1 milione di € investiti in progetti R&D nel 2017 ed una previsione fino al 2021 di circa 7 milioni di €" – C. Miranda (Resp. R&D)

Social network: una comunicazione sempre più moderna ed efficace

Grazie per l'attenzione

Graded SpA Via Generale Girolamo Calà Ulloa 38, 80141 Naples, Italy

www.graded.it

graded@graded.it

Pagina Facebook @gradedspa Twitter @GradedSpa Instagram @graded_spa